If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2+84
We move all terms to the left:
0-(-16t^2+84)=0
We add all the numbers together, and all the variables
-(-16t^2+84)=0
We get rid of parentheses
16t^2-84=0
a = 16; b = 0; c = -84;
Δ = b2-4ac
Δ = 02-4·16·(-84)
Δ = 5376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5376}=\sqrt{256*21}=\sqrt{256}*\sqrt{21}=16\sqrt{21}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{21}}{2*16}=\frac{0-16\sqrt{21}}{32} =-\frac{16\sqrt{21}}{32} =-\frac{\sqrt{21}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{21}}{2*16}=\frac{0+16\sqrt{21}}{32} =\frac{16\sqrt{21}}{32} =\frac{\sqrt{21}}{2} $
| 5(a-3)=2(-a+6) | | 3(4-x)-2(x-1)=x+2012 | | 5(x^2+5x+136)^(2/3)=50 | | 5/4=4c | | x=-16(64) | | 5u-2u=3 | | 2(y-6)=3y+-2-y | | x+7=2x+19+80 | | 11=18x+5 | | 65 k=−20 | | z^2+4z-8=0 | | 3(p=2)=-30 | | -12/5x+26/5=6 | | 6-10(5y+7)=150 | | 4x+2=0x+3 | | 6x+1+4x=21 | | 19-9x=22 | | x-6=2x-8=10 | | 0x=70x+60 | | 0x/10=7x+6 | | 11x-2/3=6/7 | | 11=3+v/2 | | 5x/10(7-7)=7x+6 | | a*3+8=12 | | 9x-62=5x-2 | | 7x/11+11=5 | | 5x-12=-5 | | 25x+10=32x-18 | | 1=v22 | | b4=24 | | 77 = 7 y | | 2x+180=48-3x |